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Abstract. A method is described to extract a complete
set of sequence-dependent energy parameters for a rigid
base-pair model of DNA from molecular dynamics
(MD) simulations. The method is properly consistent
with equilibrium statistical mechanics and leads to
effective inertia parameters for the base-pair units as
well as stacking and stiffness parameters for the base-
pair junctions. We give explicit formulas that yield a
complete set of base-pair model parameters in terms of
equilibrium averages that can be estimated from a time
series generated in an MD simulation. The expressions
to be averaged depend strongly both on the choice of
coordinates used to describe rigid-body orientations and
on the choice of strain measures at each junction.

1 Introduction

The deformations of double-helical DNA in solvent
have been studied by modeling DNA in many different
ways, for example, as an atomistic system, as a system of
interacting rigid bases or base pairs, or as a continuous
elastic rod [1, 2, 3]. These models resolve DNA
deformations to different levels of detail, possess differ-
ent practical limitations, and collectively provide a
means to explore deformations over a wide range of
scales. A basic issue for each model is the determination
of the necessary parameters, or constitutive relations,
for the kinetic and potential energies. For a family of
models possessing a natural hierarchy in resolution, it is
reasonable to expect that parameters for lower-resolu-
tion models can be determined from those of higher-
resolution models. One example of this would be the
extraction of base-pair level parameters from atomistic
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level parameters via the analysis of molecular dynamics
(MD) trajectories. Here we describe the necessary
statistical mechanics computations to carry out this
program and examine the various choices and assump-
tions that underly the approach.

A rigid base-pair model of DNA, with a quadratic
potential energy at each junction, is completely defined
by specifying a set, I, of stacking and stiffness param-
eters for each of the base-pair junctions, along with a set,
M, of inertia parameters for each of the base-pair units.
In a homogeneous model, each base pair would be as-
signed the same M, and each junction the same K. In a
non-homogeneous model, each base pair and junction
would be assigned independent parameter sets depend-
ing on sequence; for example, M could be monomer-
based and K dimer-based. In this case there would be
two independent sets M, one for each of the independent
base pairs identified (on one strand) by A or C, and ten
independent sets [, one for each of the independent
base-pair dimers AT, AG, AC, AA, CG, CC, CA, GC,
GA, TA. The parameters M could also be trimer-based
and [K tetramer-based and so on. Indeed, recent studies
[4, 5] suggest that junction parameters such as K depend
on the sequence beyond the surrounding dimer. The
stacking and stiffness parameters [K, as well as the degree
to which a quadratic potential energy itself is valid, de-
pend upon the specific choice of variables used to de-
scribe the relative positions and orientations of the rigid
base pairs. The inertia parameters M, by their nature,
are independent of this choice.

Stacking and stiffness parameters have previously
been determined for various models by a number of
different means [6, 7, 8, 9]. For example, dimer-based
stacking parameters were estimated in Refs. [6, 7] by
curve-fitting procedures applied to gel electrophoresis
data. In Ref. [8], dimer-based stacking and stiffness
parameters were estimated from protein—-DNA crystal
structures. Other levels of sequence-dependence have
also been considered. For example, trimer-based stiffness
parameters for a simplified base-pair model were
estimated in Ref. [9] from enzyme binding data. The
techniques used in these studies were adapted to exper-



imental data that provided only indirect or incomplete
information on the desired parameters. In contrast, our
objective is to develop a technique for the quantitative
determination of parameters that exploits the direct,
detailed structural information available from an
atomistic simulation of DNA.

Compared to their stacking and stiffness counter-
parts, inertia parameters have received relatively little
attention. Their determination requires dynamic data
that capture not only environmental and hydration
effects, but also sequence-dependence. While difficult to
produce by physical experiments, such data are pro-
duced by computational experiments on an atomistic
model, for example, MD simulations. The extraction of
rigid-body inertia parameters from dynamic data is itself
an intrinsically difficult task. The main problem is how
to explicitly relate the desired parameters to computa-
tional observables. As we show, such relations can be
obtained from the full phase-space distribution function
of the rigid-body system formulated in terms of nonca-
nonical momentum variables. We identify a particular
choice of variables that leads to a factorization of the
phase-space distribution, which we then exploit to derive
explicit expressions for inertia parameters.

We develop a method by which a complete set of
sequence-dependent kinetic-energy and potential-energy
parameters for a rigid base-pair model may be deter-
mined from an atomistic simulation. The method is
similar to the inverse harmonic analysis in Ref. [§], but
differs in four main respects: it is properly consistent
with the canonical distribution of equilibrium statistical
mechanics; it exploits full phase-space data rather than
only configurational data; it yields effective inertia pa-
rameters for the base-pair units in addition to stacking
and stiffness parameters; and it allows for the control of
environmental conditions to the extent possible in an
MD simulation. Our method may be viewed as an ad-
aptation to the case of rigid bodies of the methodology
in Ref. [10] for atomistic systems, but we do not assume
that the appropriate metric Jacobian factors are con-
stant as was done there.

We give explicit formulas for the base-pair model
parameters in terms of equilibrium averages in the sta-
tistical mechanics sense. The expressions to be averaged
depend strongly both on the choice of coordinates used
to describe rigid-body orientations and on the choice of
strain measures at each junction. We implicitly assume
that sufficiently long MD trajectories are available so
that the required equilibrium averages can be estimated
well. The parameters found by our method can only be
as good as the atomistic potentials employed in the MD
simulations. However, recent evidence [11] suggests that
these potentials can reliably capture sequence-dependent
structural effects in double-helical DNA.

The presentation is structured as follows. In Sect. 2
we introduce the parameter sets M and K that com-
pletely define our rigid base-pair model of DNA, and in
Sect. 3 we outline the equilibrium statistical mechanics
of this model. In Sect. 4 we identify state functions
whose equilibrium average yield the base-pair parameter
sets, and in Sect. 5 we make explicit, for two choices
of junction variables, the metric Jacobian factors that
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appear in the expressions to be averaged. In Sect. 6 we
summarize our proposed method for the determination
of the parameter sets M and K, and we discuss various
choices, assumptions, and consistency checks associated
with the overall approach.

2 Rigid base-pair model

We consider a description of double-helical DNA in
which each base pair is modeled as a rigid body. A chain
or segment of n + 1 base pairs corresponds to a list of
rigid bodies indexed by a =0,...,n, where each body
is deﬁned by a vector rl® and an orthonormal frame
{d } (i =1,2,3). The vector r@ describes the position
of a body reference point, while the frame {d } is fixed
in the body and describes its orientation relative to a
frame {e;} fixed in the lab. The configuration of a chain
is thus completely defined by the n+ 1 coordinate
vectors € R* and the n+1 rotation matrices
09 ¢ R¥3, where

A =r@ . ¢ and QY = e -d

1

fori,k=1,2,3.

The potential energy for a chain is defined in terrns of
strain or Junction variables ¥ € A ¢ R® and v e R’.
The variables #(“) might be taken as tilt-roll-twist angles
and v@ as shift-slide-rise displacements as described in
the Cambridge convention [12], which may be imple-
mented in various ways [2, 13, 14]. However, other
choices for the junction variables are possible, and cer-
tain choices may be more compatible with the assump-
tion of a quadratic potential energy than others. Thus, to
maintain some level of generality, we assume only that

%) are independent coordinates, with domain A, for the
relative rotation matrices A defined as

A — [an} 0,

and v'@ are relative displacements defined as

9 = GO, 0 )P — V], (a=1,....m)

where G(Q@W, 0@ D) € R¥ is a spemﬁed function.
The relative rotation matrix A@ describes the orien-
tation of frame {dl( >} in frame {df )} according to

3
a) y(a—1
A

i=1

(=123)

and G(Q'W, Q=1 represents a general reference frame
(possibly nonorthogonal) in which to measure the
relative displacement vector r@ — rl@ 1) The function
G should have the property G(QR, OT) = G(R, T)Q" for
all rotation matrices O, R and T. This property ensures
that the variables (1) ... v are invariant under rigid
displacements of the chain and thus de%)end only on the
chain shape. The variables u(! automatically
enjoy this property as a result of their definition.
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We consider a chain potential energy, U, of the form

n
= Z Ua(v(a)a u(a)) )
a=0

where U, is a general quadratic energy associated with
the junction between bodies a and a — 1. In particular,
we have

where K@ ¢ IRi6X6 1s a symmetrlc matrlx of stiffness
parameters, and 7% € R® and 2@ € R are parameters
representing the equilibrium values of v@ and u(9). Here
and throughout we use the notation v = (00, ... ™),
u= ... ,u"), and so on. Whether the quadratic
potential energy U is viewed as the true energy, or
simply as an approximation of it, the parameters K@,
7@, and %@ depend upon the specific choice of junction
variables used to describe the relative positions and
orientations of the rigid base pairs. The degree to which
the quadratic assumption itself is valid also depends on
this choice.

The kinetic energy of a chain depends on the inertia
properties of each constituent rigid body. To each body
we ascribe a total mass m(@, a symmetric rotational in-
ertia tensor '@ with respect to the mass center, and a
vector ¢@ that locates the mass center relative to the
body reference point, so that r@ +¢@ is the position
vector of the mass center. In terms of these quantltres
we find that the total linear momentum, p@, and an-
gular momentum, =(@, about the body reference point
are given by the vector relations

p@ = ml@ (59 4 6@ x (@)
2@ = @) x pl@) 4 P@g@

where (@ is the angular velocity vector for body a. In

terms of the components with respect to the frame
{4}, ie, T =qd@ . 1@ = ¢@ .4 and so
i S e T i j o0 i i
on, the kinetic energy, @, of a chain becomes

~ N0, (0 7@
2o

where @, is the kinetic energy of body a. In particular,
we have

O, (), 7

where, omitting the superscrrpt for cldrlty, the generdl—
ized mass matrix M € R®*® and its inverse are given in
block form by

M_< ml mlex]" )

mlex] T+ mlex]ex]”

Vol <m11+ [ex]T ! [ex]" [cx]F_1>
I ex]” r! '

Here [cx] € R¥ is the skew-symmetric matrix defined
by the coordinate vector ¢ as

0 —C3 (&)
[ex] = 3 0 —¢
—C) C1 0

and I € R¥ is the identity matrix.

A rigid base-pair model, based on a quadratic
potential energy at each junction, is thus completely
defined by specifying a kinetic energy parameter set
M = {m,c,I'} for each of the base pairs and a potential-
energy parameter set K = {7,u,K} for each of the
junctions. There are ten independent parameters in the
set M and 27 independent parameters in the set . The
number of independent sets M and K depends on how
sequence-dependence is modeled.

3 Equilibrium statistical mechanics

The equilibrium statistical properties of a rigid base-pair
chain in contact with a heat bath are described by the
standard canonical measure du as in Eq. (1). This
measure is a function of the absolute temperature
® > 0 of the heat bath, the inertia parameter sets M
and the stacking and stiffness parameter sets K. The
explicit form of du, and the relative ease with which
information can be extracted from it, depends on the
choice of configuration and momentum variables used to
define the mechanical state of the chain.

The classic form of du is obtained when chain states
are described in terms of canonical variables as defined
in the theory of Hamiltonian systems. Standard canon-
ical variables for a chain of N =n + 1 rigid base-pairs
are (v,{,u,&) € RN x R x AN x R¥®, where (v, u)
may be any strain or junction variables and ({, &) are
their associated canonical momenta. In particular, if the
chain kinetic energy @ is expressed in terms of (v,u) and
their time derivatives (v, ), then the canonical momenta
are defined by { =0®/00 and ¢ = 0®/0u. These rela-
tions yield expressions for (v,u) in terms of (v,{,u, &).
In terms of these variables, the total mechanical energy
or Hamiltonian function for the chain is

H(Uy Cv u, é) = U(Ua u) + (D(Ua 57 u, 5)

and the measure du takes the usual form [16]

U o
dj = = e HELud/O Gy dr dude | (1)

VA
where kg is the Boltzmann constant and Z >0 is a
normalizing constant. When (v, u) are chosen as junction
variables, the form of the potential energy U(v,u) is
convenient, but then the kinetic energy ®(v,{,u,¢)
expressed in the associated canonical variables is con-
figuration-dependent. This leads to a form of the
measure du that is inadequate for our purposes, because
it provides little insight into the relation between
moments of du and the parameters in M and K. One
could instead choose momentum coordinates in which
the form of the kinetic energy is simple, but in the
associated canonical configuration coordinates the po-
tential energy would be complicated, and again the
moments of the measure du would not be simply related
to the parameters in M and K.



A more useful form for the measure du can be ob-
tained by changing from canonical variables (v, {, u, &) to
the noncanonical variables (v, p,u, ). With this choice,
the Hamiltonian takes the simple, separable form

U(v,u) + ®(p,7) ,
while the measure du becomes

1 n
e oran/wO [Tt dvdpdudn . (2)
a=0

H(vﬂp7 u’ TC) =

du =

Here the additional terms J* =J(u®) are Jacobian
factors associated with the change of variables. These
factors are defined by

o [ det S5, a=0
Ja {detS“/detG a=1,....n. (3)

where G, 8% € R*** are the matrix functions

G, = G(I, [A(“)]TL

) oAl 4)
[Su m lmkA i Ik )
o 2 i ;1 " au](‘a>

and &, = e; - (e, x e;) is the permutation symbol. The
precise form of the Jacobians J! depends on the choice
of junction variables. Explicit examples for some
standard choices are given later.

When expressed in the variables (v,p,u,n) the
measure du has the desirable feature that it is factorable
into a configuration measure, du,,,, and a momentum
measure, diyom:

n
dptgon = —e /O T dvdu,
con a=0
1
dftimom = Z—e*‘l’@v“)/’fﬂ@ dpdn .
mom

Whether derived from Eq. (1) or Eq. (2), du,,, neces-
sarily involves Jacobian factors J! because of the non-
Cartesian nature of the coordinates u. While these
factors are typically ignored [8], or assumed to be
constant [10], we include them here.

Since U and ® are the sum of local energies U, and
®,, we find that dyu,,, and du,,, can each be factored
further into a product of entirely localized measures,
namely,

n 1
dpteon = Hwe_U"/kBGJZ dv(@ du'@

a=0 4con

LU
d:umom = HT

a=04mom

¢ 0e/k8® 4,(@) 4(@)

This localization is a special property of the class of
variables (v, p,u, ) introduced in Sect. 2. For example,
in addition to the specific separable form of the
Hamiltonian, the Jacobian arising in the change of
variables must also be factorable into localized terms
JU = J(u).

The statistical mechanical average of any chain state
function ¢ with respect to the measure du is given by
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[ e /EOT]"_ J*dvdpdudn
Je /O T Judvdpdudn
where all integrations are performed over R* x R x

AN x R unless mentioned otherwise. Due to the
factorability of du into localized measures we find

.y = dresw a0 dp(© dnl®
¢ Jro g € /%80 dpl@) drl@)

for any function v, = y(p'¥, (@), and

(V) Jg) _ fR3><A g e Vel k80 (@) (@) ©)
(1J5) ~ [as, n € Va/® dpla) dul@)

for any function 9, = 9(v'¥,u®). Notice that () is
equivalent to a Boltzmann average defined by ®, over
the local noncanonical momentum variables (p@, 7(@)).
In contrast, it is the ratio (J,/J%)/(1/J¥), and not (¥,),
that is equivalent to a Boltzmann average defined by U,
over the local junction variables (

(¢) =

(5)

4 Extraction relations

Here we exploit the facts that in the variables (v, p, u, )
the equilibrium measure is factorable and that the
kinetic and potential energies are of Gaussian form.
We identify state functions ¥, and ¢, that depend only
on chain kinematics and whose equilibrium averages
yield a complete set of base-pair model parameters.

4.1 Inertia parameters

A kinematic state function related to local inertia
parameters may be defined as follows. Let ¢(® denote
the angular velocity of base-pair frame {d( >} namely,

let 6@ € R3 denote the coordmate vector of components
, and let v@ € R® be the state function

Q
1S}
Y
1S)
2
(=7
=,
15}
=

The function v\@ can be recognized as the components,
in the local frame {d 1, of the base-pair linear and
angular velocities ¥ and ¢@. These velocity compo-
nents are connected to the local momentum variables
and inertia parameters through the relation

Using this function in Eq. (5) and carrying out the
indicated integrations [17] we obtain

(W@ @) = kg@M@] ! (0<a<n). (7)
Here we use the notation v @ v(@ to denote the 6 x 6

matrix with components [v( @ (@] ; = (e v where
wi=1...,6.
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4.2 Stacking and stiffness parameters

A kinematic state function related to local stacking
and stiffness parameters is provided by w@ =
('@, u®) € R®. If we suppose that the coordinate
domain A for the variables u@ is all of R?, then
Eq. (6) yields the exact expressions

() 14)

) =w, (1<a<n) (8)
and
(AWl @ Awl® [J4) a1
) = kgOKY)™ (1<a<n), (9

where Aw(@ = w(@ — (@ By expanding the left-hand

side of Eq. (9) and using Eq. (8) we deduce

<W(a) ® W(a) /J:;>
(1)

which may be more convenient than Eq. (9) since the

average (wl@ ® wl@ /J*) is independent of the parame-
ters w(@),

= kgOK@] ™ + %9 @ wl@ | (10)

5 Junction variables and Jacobians

The Jacobian factors J¥ appearing in the statistical
mechanical averages depend upon the specific variables
u@ used to describe a relative rotation matrix A and
on the choice of the function G used to define the relative
displacement variables v(?). There are many independent
options for both, and these lead to nontrivial Jacobians
in general.

5.1 Cambridge convention variables

The shift-slide-rise and tilt-roll-twist variables described
in the Cambridge convention [12] can be interpreted and
implemented in a variety of ways [2, 13, 14]. Each
different implementation will generally lead to a different
Jacobian factor. To illustrate the necessary computa-
tions, we suppose that the shift-slide-rise displacements
v € R are the components in the local frame {d§”7 }
of the relative displacement vector r@ — r(@=1) namely,

2@ = [Q(a—l)]T[r(a) . r(a—l)} '

Here v; is the shift, v, is the slide and v is the rise. From
this definition we deduce G(Q@, 0@=1) = [0« D]" | thus

G' =G, AY)) =A@ and det G" =1

a

since A is a rotation matrix. Furthermore, we suppose
that the tilt-roll-twist parameterization of the relative
rotation matrix A is defined by

A= (fg,g) X (—m,m) X (—m, @)

€2C3 — §15283  —C1S3  §2C3 + S1C283
€283 + 8152€3  C1C3  $283 — S1C2C3 )
—C182 81 c1C2

AW —

where ¢; = cos(ul@), 5 = sin(uf”)). Here u, is the tilt, u»
is the roll, and w3 is the twist. From Eq. (4) we deduce

(65 0 —C182
Sy=10 1 s ,
s2 0 ciem
which implies
det S* = cos(u\”) .
Insertion of the expressions for det G and det S% into
Eq. (3) leads to the Jacobian factors

(a)

Jy=cos(u;’), a=1,....n .

5.2 Discretized continuum variables

Another choice of junction variables is motivated by the
continuum theory of elastic rods [15]. Here, relative
displacements between base-pairs are naturally mea-
sured by

0@ — ) (0@ + Qle=D]T[a)
from which we deduce
G(Q(a>7Q(a71)) :%[Q“’) + Q(a—l)]T
and

G' = G(I,[A)") =11+ A“) .

The parameterization for the relative rotation matrix
A is defined by

A=R,

— r(a71>]

)

Al — ([+%[ux](a))<17%[ux}(a))—l 7

from which we deduce

St = (=3 / [+ 4P

The determinants of G% and S are

-1
det G = [1 —|—%|u<”>|2} :

-2
det S = [1 +5|u<a>|2] :

which leads to the Jacobian factors
JU =14+ Hu@P) a=1,n .

This choice of junction variables has a straightforward
physical interpretation. The variables v are the com-
ponents of the relative displacement vector in the
average, nonorthogonal frame defined by %[Q(“)
+0@=V]. The variables u(? define the rotation axis
and the total rotation angle of A in the local frame

{dl(“*l)}. In particular, the rotation axis is parallel to
(a

the vector with components u; ), and the total rotation

angle 0 ¢ [0,7) about this (oriented) axis satisfies
cos 0@ = [1 — L u@)/[1 + L|u@]’]. The variables u®
may be determined from the relative rotation matrix A
according to the formula



uz(a) Z gjlkA/k 9

1 + tr[A

where tr[A] = Zle A and g is the permutation
symbol introduced in Sect. 3.

These discretized continuum variables possess a sim-
ple symmetry property with respect to complementary
strands. To see this, first notice that base pairs may be
labeled by a = 0,...,n along one strand of double-heli-
cal DNA in the 5-to-3 direction or by » = 0,...,n along
the complementary strand in the 5'-to-3’ direction. If
{r,d;}“V and {r,d;}') are the local frames for a dimer
step along the first strand and {r, di}(bfl) and {r,di}(b)
are the frames for this step along the complementary
strand, then r® = rle=D_d{" =4\ and d” = —d\“""
for i = 2,3 in accordance with the Cambridge conven-
tion. Similar relations hold for the local frames with the
complementary labels 5 — 1 and a. From the definition
of the discretized continuum variables we deduce

(01, 02,03)? = (=01, 09,03),

(ul , Uz, u3)(b) = (—U] , U, u3)<a)

Thus, variables computed along one strand and those
computed along its complement differ only by a sign in
the first component. While there is always a functional
relationship between junction variables computed along
complementary strands, this relationship is particularly
simple for these discretized continuum variables. (For a
discussion of symmetry conditions in other variables see
Refs. [2, 13], and references therein.)

6 Proposed extraction method

Our proposed method to extract rigid base-pair param-
eters from MD simulation data involves six main
considerations:

1. Identzﬁcatzon of rigid base pairs. A rule is needed for
assigning a reference point @ and a frame 0@ to each
base pair in the atomistic MD model. There are many
possible ways to construct such a rule; one standard
example is provided in the program Curves [18, 19].
Such a rule is a necessary, but independent, part of
the extraction method. The choice of rule should be
consistent with the assumption that each base pair is
a kinematically independent rigid body as outlined in
Sect. 2. For example, the rule should be based only on
individual base pairs, and not on any averages with its
nearest neighbors.

2. Choice of junction variables. A choice must be made
regarding the local junction variables w(@ = (v<”),u(”>)
that measure the relative displacement and rotation be-
tween adjacent base pairs. As discussed in Sect. 2, there
are many choices for these variables and certain choices
may well be more compatible than others with the as-
sumption of a quadratic potential energy in those vari-
ables. Each different choice gives rise to a different set of
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Jacobian factors, J¥, as defined in Sect. 3. These factors
appear in the extraction relations presented in Sect. 4,
and are explicitly computed in Sect. 5 for two different
choices of junction variables.

3. Estimation and testing of equilibrium averages. The
central step of the extraction method is the estimation of
the equilibrium averages

(L), w91,
W9 @ W(“)/JZ>’ (W9 @@y |

from a time series of rigid-body configurations extracted
from an MD simulation. Since the arguments of these
averages are all functions of the chain variables 7, Q, 7,
and Q, the averages can indeed be estimated from time
series data on » and Q. Notice that 7 and O themselves
can be estimated from the data via an appropriate finite-
difference approximation in time. The practical success
or failure of our extraction method will be dependent on
whether sufficiently long MD trajectories are available
so that the required equilibrium averages can be
estimated well. Of course, statistical tests should be
applied whenever possible to determine whether or not
time averages have reached equilibrium values.

(11)

4. Extraction of parameters. Given numerical estimates
for the equilibrium averages Eq. (11), the rigid base-pair
model parameters may be determmed from Egs. (7), (8),
and (10). Since the form of [M )]_1 is known explicitly,
the inertia parameters m@, ¢@, and T'® can be deter-
mined directly from the estimate of (vl ® v ). Simi-
larly, the stacking parameters 9@ and #® can be
determlned directly from the estimates of (1 /JY¥) and
(W@ /J*y. The determination of the st1ﬁ‘ness parameters

K@ from the estimate of (W@ @ w(@/J*) requires a
matrix inversion.

5. Consistency checks on model. Consistency checks are
available to assess the validity of a rigid base-pair model
with a quadratic potential energy. The degree to which
each base-pair in the MD model behaves as a r1g1d body
can be assessed from the moments of the variable v(¢). All
moments of this variable should be consistent with equi-
librium averages computed from Eq. (5). For example, all
first- and third-order moments should vanish, and the
matrix of second order moments, which is proportional
to [M@]!, should have only ten independent elements.

Assumptlons on the potential energy can also be checked.

For example, third- and higher-order moments of the
variable Awl@, scaled by J! asin Eq. (6), provide a check
on the validity of the assumed quadratic dependence of
the potential energy in the chosen coordinates w'®.

6. Interpretation of results. For an MD simulation of a
given DNA oligomer consisting of n + 1 base pairs, our
extraction method will yield »n sets of stacking and
stiffness parameters KK, one for each base-pair junction,
and n+ 1 sets of inertia parameters M, one for each
base-pair unit. All these sets will likely have different
numerical values regardless of the oligomer sequence
composition. The extra steps of data processing neces-
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sary to reduce an arbitrary number of parameter sets to
a fixed number or table of sequence-dependent sets are
not addressed in this article. Nevertheless, we remark
that the degree to which the parameter sets I and M
depend on sequence is a modeling assumption. For
example, it is reasonable to assume that the parameters
K for a particular base-pair junction depend on the
surrounding dimer (two nearest neighbors) or the sur-
rounding tetramer (four nearest neighbors), and so on.
Similarly, it is reasonable to assume that the parameters
M for a particular base-pair unit depend on the mono-
mer itself or on the trimer of nearest neighbors (i.e., the
unit itself and two nearest neighbors), and so on. For a
given level of sequence-dependence, the sets K and M
should depend on the local sequence composition and
not the global location within an oligomer. This obser-
vation could be exploited to derive consistency checks on
assumed models of sequence dependence.
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